Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Aging Cell ; 23(2): e14036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37941511

RESUMO

Aging of the vasculature is associated with detrimental changes in vascular smooth muscle cell (VSMC) mechanosensitivity to extrinsic forces in their surrounding microenvironment. However, how chronological aging alters VSMCs' ability to sense and adapt to mechanical perturbations remains unexplored. Here, we show defective VSMC mechanosensation in aging measured with ultrasound tweezers-based micromechanical system, force instantaneous frequency spectrum, and transcriptome analyses. The study reveals that aged VSMCs adapt to a relatively inert mechanobiological state with altered actin cytoskeletal integrity, resulting in an impairment in their mechanosensitivity and dynamic mechanoresponse to mechanical perturbations. The aging-associated decline in mechanosensation behaviors is mediated by hyperactivity of Piezo1-dependent calcium signaling. Inhibition of Piezo1 alleviates vascular aging and partially restores the loss in dynamic contractile properties in aged cells. Altogether, our study reveals the signaling pathway underlying aging-associated aberrant mechanosensation in VSMC and identifies Piezo1 as a potential therapeutic mechanobiological target to alleviate vascular aging.


Assuntos
Actinas , Músculo Liso Vascular , Músculo Liso Vascular/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Transdução de Sinais , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686223

RESUMO

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold enormous potential in cardiac disease modeling, drug screening, and regenerative medicine. Furthermore, patient-specific iPSC-CMS can be tested for personalized medicine. To provide a deeper understanding of the contractile force dynamics of iPSC-CMs, we employed Atomic Force Microscopy (AFM) as an advanced detection tool to distinguish the characteristics of force dynamics at a single cell level. We measured normal (vertical) and lateral (axial) force at different pacing frequencies. We found a significant correlation between normal and lateral force. We also observed a significant force-frequency relationship for both types of forces. This work represents the first demonstration of the correlation of normal and lateral force from individual iPSC-CMs. The identification of this correlation is relevant because it validates the comparison across systems and models that can only account for either normal or lateral force. These findings enhance our understanding of iPSC-CM properties, thereby paving the way for the development of therapeutic strategies in cardiovascular medicine.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Humanos , Doenças Cardiovasculares/terapia , Medicina de Precisão , Miócitos Cardíacos , Análise de Célula Única
3.
bioRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37163041

RESUMO

Aging of the vasculature is associated with detrimental changes in vascular smooth muscle cell (VSMC) mechanosensitivity to extrinsic forces in their surrounding microenvironment. However, how chronological aging alters VSMCs' ability to sense and adapt to mechanical perturbations remains unexplored. Here, we show defective VSMC mechanosensation in aging measured with ultrasound tweezers-based micromechanical system, force instantaneous frequency spectrum and transcriptome analyses. The mechanobiological study reveals that aged VSMCs adapt a relatively inert solid-like state with altered actin cytoskeletal integrity, resulting in an impairment in their mechanosensitivity and dynamic mechanoresponse to mechanical perturbations. The aging-associated decline in mechanosensation behaviors is mediated by hyperactivity of Piezo1-dependent calcium signaling. Inhibition of Piezo1 alleviates vascular aging and partially restores the loss in dynamic contractile properties in aged cells. Altogether, our study reveals the novel signaling pathway underlying aging-associated aberrant mechanosensation in VSMC and identifies Piezo1 as a potential therapeutic mechanobiological target to alleviate vascular aging.

4.
Nat Commun ; 13(1): 512, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082286

RESUMO

Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of VSMC in AAA measured with ultrasound tweezers-based micromechanical system and single-cell RNA sequencing technique. Theoretical modelling predicts that cytoskeleton alterations fuel cell membrane tension of VSMC, thereby modulating their mechanoallostatic responses which are validated by live micromechanical measurements. Mechanistically, VSMC gradually adopt a mechanically solid-like state by upregulating cytoskeleton crosslinker, α-actinin2, in the presence of AAA-promoting signal, Netrin-1, thereby directly powering the activity of mechanosensory ion channel Piezo1. Inhibition of Piezo1 prevents mice from developing AAA by alleviating pathological vascular remodeling. Our findings demonstrate that deviations of mechanosensation behaviors of VSMC is detrimental for AAA and identifies Piezo1 as a novel culprit of mechanically fatigued aorta in AAA.


Assuntos
Aneurisma Aórtico/metabolismo , Canais Iônicos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Aneurisma , Animais , Aorta Abdominal , Aneurisma Aórtico/patologia , Aneurisma da Aorta Abdominal/metabolismo , Engenharia Biomédica , Fenômenos Biofísicos , Modelos Animais de Doenças , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Netrina-1/metabolismo , Fenótipo , Estresse Mecânico , Remodelação Vascular
5.
Chem Commun (Camb) ; 57(94): 12667-12670, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34778897

RESUMO

We report here strategic functionalization of the Wnt5a mimetic peptide ligand Foxy5 on a polydimethylsiloxane elastomer substrate to enhance the mechanotransduction and activation of cytotoxic CD8+ T cells by triggering the noncanonical Wnt signaling. This new mechanoregulatory ligand platform can be widely applied in the fundamental research of mechano-immunology and further the development of novel immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Oligopeptídeos/metabolismo , Proteína Wnt-5a/metabolismo , Humanos , Ligantes , Mecanotransdução Celular , Propriedades de Superfície , Via de Sinalização Wnt
6.
Ann N Y Acad Sci ; 1491(1): 3-24, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33231326

RESUMO

Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.


Assuntos
Envelhecimento/fisiologia , Citoesqueleto/fisiologia , Mecanotransdução Celular/fisiologia , Sistema Musculoesquelético/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Progressão da Doença , Elasticidade/fisiologia , Humanos , Debilidade Muscular/fisiopatologia
7.
Biophys J ; 119(9): 1771-1780, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086046

RESUMO

Mechanical forces between cells and their microenvironment critically regulate the asymmetric morphogenesis and physiological functions in vascular systems. Here, we investigated the asymmetric cell alignment and cellular forces simultaneously in micropatterned endothelial cell ring-shaped sheets and studied how the traction and intercellular forces are involved in the asymmetric vascular morphogenesis. Tuning the traction and intercellular forces using different topographic geometries of symmetric and asymmetric ring-shaped patterns regulated the vascular asymmetric morphogenesis in vitro. Moreover, pharmacologically suppressing the cell traction force and intercellular force disturbed the force-dependent asymmetric cell alignment. We further studied this phenomenon by modeling the vascular sheets with a mechanical force-propelled active particle model and confirmed that mechanical forces synergistically drive the asymmetric endothelial cell alignments in different tissue geometries. Further study using mouse diabetic aortic endothelial cells indicated that diseased endothelial cells exhibited abnormal cell alignments, traction, and intercellular forces, indicating the importance of mechanical forces in physiological vascular morphogenesis and functions. Overall, we have established a controllable micromechanical platform to study the force-dependent vascular asymmetric morphogenesis and thus provide a direct link between single-cell mechanical processes and collective behaviors in a multicellular environment.


Assuntos
Células Endoteliais , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Camundongos , Morfogênese , Estresse Mecânico
8.
Biophys J ; 117(10): 1795-1804, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31706566

RESUMO

Cells in vivo encounter and exert forces as they interact with the extracellular matrix (ECM) and neighboring cells during migration. These mechanical forces play crucial roles in regulating cell migratory behaviors. Although a variety of studies have focused on describing single-cell or the collective cell migration behaviors, a fully mechanistic understanding of how the cell-cell (intercellular) and cell-ECM (extracellular) traction forces individually and cooperatively regulate single-cell migration and coordinate multicellular movement in a cellular monolayer is still lacking. Here, we developed an integrated experimental and analytical system to examine both the intercellular and extracellular traction forces acting on individual cells within an endothelial cell colony as well as their roles in guiding cell migratory behaviors (i.e., cell translation and rotation). Combined with force, multipole, and moment analysis, our results revealed that traction force dominates in regulating cell active translation, whereas intercellular force actively modulates cell rotation. Our findings advance the understanding of the intricacies of cell-cell and cell-ECM forces in regulating cellular migratory behaviors that occur during the monolayer development and may yield deeper insights into the single-cell dynamic behaviors during tissue development, embryogenesis, and wound healing.


Assuntos
Movimento Celular/fisiologia , Junções Célula-Matriz/fisiologia , Animais , Fenômenos Biomecânicos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Camundongos , Rotação , Torque
9.
Nano Lett ; 19(10): 6742-6750, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31538794

RESUMO

Traction force microscopy (TFM) derives maps of cell-generated forces, typically in the nanonewton range, transmitted to the extracellular environment upon actuation of complex biological processes. In traditional approaches, force rendering requires a terminal, time-consuming step of cell deadhesion to obtain a reference image. A conceptually opposite approach is provided by reference-free methods, opening to the on-the-fly generation of force maps from an ongoing experiment. This requires an image processing algorithm keeping the pace of the biological phenomena under investigation. Here, we introduce an integrated software pipeline rendering force maps from single reference-free TFM images seconds to minutes after their acquisition. The algorithm tackles image processing, reference image estimation, and finite element analysis as a single problem, yielding a robust and fully automatic solution. The method's capabilities are demonstrated in two applications. First, the mechanical annihilation of cancer cells is monitored as a function of rising environmental temperature, setting a population threshold at 45 °C. Second, the fast temporal correlation of forces produced across individual cells is used to map physically connected adhesion points, yielding typical lengths that vary as a function of the cell cycle phase.

10.
Adv Mater ; 31(35): e1900453, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31270881

RESUMO

Allostasis is a fundamental biological process through which living organisms achieve stability via physiological or behavioral changes to protect against internal and external stresses, and ultimately better adapt to the local environment. However, an full understanding of cellular-level allostasis is far from developed. By employing an integrated micromechanical tool capable of applying controlled mechanical stress on an individual cell and simultaneously reporting dynamic information of subcellular mechanics, individual cell allostasis is observed to occur through a biphasic process; cellular mechanics tends to restore to a stable state through a mechanoadaptative process with excitative biophysical activity followed by a decaying adaptive phase. Based on these observations, it is found that cellular allostasis occurs through a complex balance of subcellular energy and cellular mechanics; upon a transient and local physical stimulation, cells trigger an allostatic state that maximizes energy and overcomes a mechanical "energy barrier" followed by a relaxation state that reaches its mechanobiological stabilization and energy minimization. Discoveries of energy-driven cellular machinery and conserved mechanotransductive pathways underscore the critical role of force-sensitive cytoskeleton equilibrium in cellular allostasis. This highlight the biophysical origin of cellular mechanical allostasis, providing subcellular methods to understand the etiology and progression of certain diseases or aging.


Assuntos
Alostase , Fenômenos Mecânicos , Fenômenos Biomecânicos , Cálcio/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Humanos , Termodinâmica
11.
ACS Appl Mater Interfaces ; 9(48): 41794-41806, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29116745

RESUMO

Mesenchymal stem cell (MSC) differentiation can be manipulated by nanotopographic interface providing a unique strategy to engineering stem cell therapy and circumventing complex cellular reprogramming. However, our understanding of the nanotopographic-mechanosensitive properties of MSCs and the underlying biophysical linkage of the nanotopography-engineered stem cell to directed commitment remains elusive. Here, we show that osteogenic differentiation of human MSCs (hMSCs) can be largely promoted using our nanoengineered topographic glass substrates in the absence of dexamethasone, a key exogenous factor for osteogenesis induction. We demonstrate that hMSCs sense and respond to surface nanotopography, through modulation of adhesion, cytoskeleton tension, and nuclear activation of TAZ (transcriptional coactivator with PDZ-binding motif), a transcriptional modulator of hMSCs. Our findings demonstrate the potential of nanotopographic surfaces as noninvasive tools to advance cell-based therapies for bone engineering and highlight the origin of biophysical response of hMSC to nanotopography.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Humanos , Nanoestruturas , Osteogênese , Transdução de Sinais , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA